Representing the thermal state in time-dependent density functional theory.
نویسندگان
چکیده
Classical molecular dynamics (MD) provides a powerful and widely used approach to determining thermodynamic properties by integrating the classical equations of motion of a system of atoms. Time-Dependent Density Functional Theory (TDDFT) provides a powerful and increasingly useful approach to integrating the quantum equations of motion for a system of electrons. TDDFT efficiently captures the unitary evolution of a many-electron state by mapping the system into a fictitious non-interacting system. In analogy to MD, one could imagine obtaining the thermodynamic properties of an electronic system from a TDDFT simulation in which the electrons are excited from their ground state by a time-dependent potential and then allowed to evolve freely in time while statistical data are captured from periodic snapshots of the system. For a variety of systems (e.g., many metals), the electrons reach an effective state of internal equilibrium due to electron-electron interactions on a time scale that is short compared to electron-phonon equilibration. During the initial time-evolution of such systems following electronic excitation, electron-phonon interactions should be negligible, and therefore, TDDFT should successfully capture the internal thermalization of the electrons. However, it is unclear how TDDFT represents the resulting thermal state. In particular, the thermal state is usually represented in quantum statistical mechanics as a mixed state, while the occupations of the TDDFT wavefunctions are fixed by the initial state in TDDFT. We work to address this puzzle by (A) reformulating quantum statistical mechanics so that thermodynamic expectations can be obtained as an unweighted average over a set of many-body pure states and (B) constructing a family of non-interacting (single determinant) TDDFT states that approximate the required many-body states for the canonical ensemble.
منابع مشابه
Investigation of the phononic and thermal properties of tungsten disulfide compound using density functional theory (Research Article)
In this paper, the phononic and thermal properties of tungsten disulfide have been studied. The aim of this study was to investigate the phonon and thermal properties such as heat capacity and enthalpy. The calculations are performed within the framework of density functional theory by pseudo-potential methood and by Quantum Espresso computational package and their exchange-correlation function...
متن کاملAbsorption Spectra and Electron Injection Study of the Donor Bridge Acceptor Sensitizers by Long Range Corrected Functional
Ground state geometries have been computed using Density Functional Theory (DFT) at B3LYP/6-31G(d,p) level of theory. The excitation energies and spectroscopic parameters have been computed using Long range Corrected (LC) hybrid functional by Time Dependent Density Functional Theory (TDDFT) with LC-BLYP level of theory. The Polarizable Continuum Model (PC...
متن کاملSurface Tension Prediction of n-Alkanes by a Modified Peng-Robinson Equation of State Using the Density Functional Theory
Through this study, the ability of a modified Peng-Robinson (MPR) equation of state in predicting the surface tension of n-alkanes based on the density functional theory approach was investigated and compared with other studies. The interfacial layer thickness and the density profile were calculated simultaneously at different temperatures from triple point to near critical point using the modi...
متن کاملCalculation of phononic and thermal properties of the CaB2 using the perturbation density functional theory (Research Article)
In this paper, the phononic structure and Enthalpy of CaB2 compound in simple hexagonal and orthorhombic phase have been investigated. The calculations were performed using the pseudo-potential method in the framework of the density functional theory and using the Quantum-Espresso code. Using the group theory and the characteristic table of the composition point group, the phonon modes were ide...
متن کاملThe structural and density state calculation of B Nitrogen doped silicene nano flake
In this paper, we study the effect of single Boron/Nitrogen impurityatom on electronic properties of a silicene nano flake. Our calculations are basedon density functional theory by using Gaussian package. Here, one Si atom insilicene nano flake substitutes with a Boron/Nitrogen atom. The results show thatsubstitution of one Si atom with single Boron/Nitrogen atom increases distanceof impurity ...
متن کاملStructural Characteristics and Reactivity Relationship of some Thiophene Derivatives
ABSTRACT The application of many hetero-aromatic compounds in pharmaceutical and dye industries make the theoretical study of their dipole moment (µ) oscillator strength (f) and other photo-physical properties worthwhile. These properties determine the solubility of many compounds; predict the relationship between their structures, properties and performance. The f, µ, α, transition dipole mome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 142 20 شماره
صفحات -
تاریخ انتشار 2015